WITHOUT CHEAP OIL, IT’S ALL OVER

7 comments

Posted on 16th August 2014 by Administrator in Economy |Politics |Social Issues

,

Energy And The Economy – Twelve Basic Principles

Submitted by Gail Tverberg via Our Finite World blog,

There is a standard view of energy and the economy that can briefly be summarized as follows: Economic growth can continue forever; we will learn to use less energy supplies; energy prices will rise; and the world will adapt. My view of how energy and the economy fit together is very different. It is based on the principle of reaching limits in a finite world. Let me explain the issues as I see them.

Twelve Basic Principles of Energy and the Economy

 

1. Economic models are no longer valid, as we start getting close to limits.

We live in a finite world. Because of this, the extraction of energy resources and of resources in general operates in a way that is not at all intuitive as we approach limits. Economists have put together models of how the economy can be expected to act based on how the economy acts when it is distant from limits. Unfortunately, these economic models are worse than useless as limits approach because modeled relationships no longer hold. For example:

(a) The assumption that oil prices will rise as the cost of extraction rises is not necessarily true. Instead, a finite world creates feedback loops that tend to keep oil prices too low because of its tight inter-connections with wages. We see this happening right now. The Telegraph reported recently, “Oil and gas company debt soars to danger levels to cover shortfall in cash.”

(b) The assumption that greater investment will lead to greater output becomes less and less true, as the easy to extract resources (including oil) become more depleted.

(c) The assumption that higher prices will lead to higher wages no longer holds, as the easy to extract resources (including oil) become more depleted.

(d) The assumption that substitution will be possible when there are shortages becomes less and less appropriate because of interconnections with the rest of the system. Particular problems include the huge investment required for such substitution, impacts on the financial system, and shortages developing simultaneously in many areas (oil, metals such as copper, rare earth metals, and fresh water, for example).

More information is available from my post, Why Standard Economic Models Don’t Work–Our Economy is a Network.

 

2. Energy and other physical resources are integral to the economy.

In order to make any type of goods suitable for human use, it takes resources of various sorts (often soil, water, wood, stones, metals, and/or petrochemicals), plus one or more forms of energy (human energy, animal energy, wind power, energy from flowing water, solar energy, burned wood or fossil fuels, and/or electricity).

Figure 1. Energy of various types is used to transform raw materials (that is resources) into finished products.

 

3. As we approach limits, diminishing returns leads to growing inefficiency in production, rather than growing efficiency.

As we use resources of any sort, we use the easiest (and cheapest) to extract first. This leads to a situation of diminishing returns. In other words, as more resources are extracted, extraction becomes increasingly expensive in terms of resources required, including human and other energy requirements. These diminishing returns do not diminish in a continuous slow way. Instead, there tends to be a steep rise in costs after a long period of slowly increasing costs, as limits are approached.

Figure 2. The way we would expect the cost of the extraction of energy supplies to rise, as finite supplies deplete.

One example of such steeply rising costs is the sharply rising cost of oil extraction since 2000 (about 12% per year for “upstream costs”). Another is the steep rise in costs that occurs when a community finds it must use desalination to obtain fresh water because deeper wells no longer work. Another example involves metals extraction. As the quality of the metal ore drops, the amount of waste material rises slowly at first, and then rapidly escalates as metal concentrations approaches 0%, as in Figure 2.

The sharp shift in the cost of extraction wreaks havoc with economic models based on a long period of very slowly rising costs. In a period of slowly rising costs, technological advances can easily offset the underlying rise in extraction costs, leading to falling total costs. Once limits are approached, technological advances can no longer completely offset underlying cost increases. The inflation-adjusted cost of extraction starts rising. The economy, in effect, starts becoming less and less efficient. This is in sharp contrast to lower costs and thus apparently greater efficiency experienced in earlier periods.

 

4. Energy consumption is integral to “holding our own” against other species.

All species reproduce in greater numbers than need to replace their parents. Natural selection determines which ones survive. Humans are part of this competition as well.

In the past 100,000 years, humans have been able to “win” this competition by harnessing external energy of various types–first burned biomass to cook food and keep warm, later trained dogs to help in hunting. The amount of energy harnessed by humans has grown over the years. The types of energy harnessed include human slaves, energy from animals of various sorts, solar energy, wind energy, water energy, burned wood and fossil fuels, and electricity from various sources.

Human population has soared, especially since the time fossil fuels began to be used, about 1800.

Figure 3. World population based on data from "Atlas of World History," McEvedy and Jones, Penguin Reference Books, 1978  and Wikipedia-World Population.

Even now, human population continues to grow (Figure 4), although the percentage rate of growth has slowed.

Figure 4. World population split between US, EU-27, and Japan, and the Rest of the World.

Because the world is finite, the greater use of resources by humans leads to lesser availability of resources by other species. There is evidence that the Sixth Mass Extinction of species started back in the days of hunter-gatherers, as their ability to use of fire to burn biomass and ability to train dogs to assist them in the hunt for food gave them an advantage over other species.

Also, because of the tight coupling of human population with growing energy consumption historically, even back to hunter-gatherer days, it is doubtful that decoupling of energy consumption and population growth can fully take place. Energy consumption is needed for such diverse tasks as growing food, producing fresh water, controlling microbes, and transporting goods.

 

5. We depend on a fragile self-organized economy that cannot be easily replaced. 

Individual humans acting on their own have very limited ability to extract and control resources, including energy resources. The only way such control can happen is through a self-organized economy that allows people, businesses, and governments to work together on common endeavors. Development of a self-organized economy started very early, as bands of hunter-gatherers learned to work together, perhaps over shared meals of cooked food. More complex economies grew up as additional functions were added. These economies have gradually merged together to form the huge international economy we have today, including international trade and international finance.

This networked economy has a tendency to grow, in part because human population tends to grow (Item 4 above), and in part because greater complexity is required to solve problems, as an economy grows. This networked economy gradually adds more businesses and consumers, each one making choices based on prices and regulations in place at the particular time.

Figure 5. Dome constructed using Leonardo Sticks

This networked economy is fragile. It can grow, but it cannot easily shrink, because the economy is constantly optimized for the circumstances at the time. As new products are developed (such as cars), support for prior approaches (such as horses, buggies and buggy whips) disappears. Systems designed for the current level of usage, such as oil pipelines or Internet infrastructure, cannot easily be changed to accommodate a much lower level of usage. This is the reason why the economy is illustrated as interconnected but hollow inside.

Another reason that the economy cannot shrink is because of the large amount of debt in place. If the economy shrinks, the number of debt defaults will soar, and many banks and insurance companies will find themselves in financial difficulty. Lack of banking and insurance services will adversely affect both local and international trade.

 

6. Limits of a finite world exert many pressures simultaneously on an economy. 

There are a number of ways an economy can reach a situation of inadequate resources for its population. While all of these may not happen at once, the combination makes the result worse than it otherwise would be.

a. Diminishing returns (that is, rising production costs as depletion sets in) for resources such as fresh water, metals, and fossil fuels.

b. Declining soil quality due to erosion, loss of mineral content, or increased soil salinity due to poor irrigation practices.

c. Rising population relative to the amount of arable land, fresh water, forest resources, mineral resources, and other resources available.

d. A need to use an increasing share of resources to combat pollution, related to resource extraction and use.

e. A need to use an increasing share of resources to maintain built infrastructure, such as roads, pipelines, electric grids, and schools.

f. A need to use an increasing share of resources to support government activities to support an increasingly complex society.

g. Declining availability of food that is traditionally hunted (such as fish, monkeys, and elephants), because an increase in human population leads to over-hunting and loss of habitat for other species.

 

7. Our current problems are worryingly similar to the problems experienced by earlier civilizations before they collapsed.

In the past, there have been civilizations that were confined to a limited area that grew for a while, and then collapsed once resource availability declined or population outgrew resources. Such issues led to a situation of diminishing returns, similar to the problems we are experiencing today. We know from studies of these prior civilizations how diminishing returns manifested themselves. These include:

(a) Reduced job availability and lower wages, especially for new workers joining the workforce.

(b) Spiking food costs.

(c) Growing demands on governments for services, because of (a) and (b).

(d) Greater disparities in wealth, as newer workers find it hard to get good-paying jobs.

(e) Declining ability of governments to collect sufficient taxes from common workers who are producing less and less (because of diminishing returns) and because of this, receiving lower wages.

(f) Increased reliance on debt.

(g) Increased likelihood of resource wars, as a group with inadequate resources tries to take resources from other groups.

(h) Eventual population decline. This occurred for two reasons: As wages dropped and needed taxes rose, workers found it increasingly difficult to obtain an adequate diet. As a result, they become more susceptible to epidemics and diseases. Greater involvement in resource wars also led to higher death rates.

When collapse came, it did not come all at once. Rather a long period of growth was succeeded by a period of stagnation, before a crisis period of several years took place.

Figure 6. Shape of typical Secular Cycle, based on work of Peter Turchin and Sergey Nefedov in Secular Cycles.

We began an economic growth cycle back when we began using fossil fuels to a significant extent, starting about 1800. We began a stagflation period, at least in the industrialized economies, when oil prices began to spike in the 1970s. Less industrialized countries have been able to continue growth their growth pattern longer. Our situation is likely to differ from that of early civilizations, because early civilizations were not dependent on fossil fuels. Pre-collapse skills tended to be useful post-collapse, because there was no real change in energy sources. Loss of fossil fuels would considerably change the dynamic of the outcome, because most jobs would become obsolete.

Most models put together by economists assume that the conditions of the growth period, or the growth plus stagflation period, will continue forever. Such models miss turning points.

 

8. Modeling underlying the book Limits to Growth shows why depletion can be expected to lead to declining economic growth. It also shows why extracting all of the resources that seem to be available is likely to be impossible.

We also know from the analysis underlying the book The Limits to Growth (by Donella Meadows and others, published in 1972) that growing demand for resources because of Items listed as 6a to 6g above will take an increasingly large share of resources produced. This dynamic makes it very difficult to produce enough additional resources so that economic growth can continue. The authors report that the behavior mode of the modeled system is overshoot and collapse.

The 1972 analysis does not model the financial system, including debt and the repayment of debt with interest. The closest it comes to economic modeling is modeling industrial capital, which it describes as factories, machines, and other physical “stuff” needed to extract resources and produce goods. It finds that inability to produce enough industrial capital is likely to be a bottleneck far before resources in the ground are exhausted.

As an example in today’s world, there seems to be a huge amount of very heavy oil that can be steamed out of the ground in many places including Canada and Venezuela. (The existence of such heavy oil is one reason the ratio of oil reserves to oil production is high.) To actually get this oil out of the ground quickly would require a huge physical investment in a very short time frame. As a practical matter, we cannot ramp up all of the physical infrastructure needed (pipelines, steaming equipment, refining equipment) without badly cutting into the resources needed to “grow” the rest of the economy. A similar problem is likely to exist if we try to ramp up world oil and gas supply using fracking.

 

9. Our real concern should be collapse caused by reaching limits in many ways, not the slow decline reflected in a Hubbert Curve.

One reason for being concerned about collapse is the similarity of the problems our current economy is experiencing to those of prior economies that collapsed, as discussed in Item 7. Another reason for this concern is based on the observation from physics that an economy is a dissipative structure, just as a hurricanes is, and just as a human being is. Such dissipative structures have a finite lifetime.

Concern about future collapse is very different from concern that one or another resource will decline in a symmetric Hubbert curve. The view that resources such as oil will gradually decrease in availability once 50% of the resources have been extracted reflects a best-case scenario, where a perfect replacement (both cheap and abundant) replaces the item that is depleting, so that the economy is not affected. Hubbert illustrated the kind of situation he was envisioning with the following graphic:

Figure 7. Figure from Hubbert's 1956 paper, Nuclear Energy and the Fossil Fuels.

 

10. There is a tight link between both oil consumption and total energy consumption and world economic growth. 

This tight link is evident from historical data:

Figure 8. A comparison of three year average growth in world real GDP (based on USDA values in $2005$), oil supply and energy supply. Oil and energy supply are from BP Statistical Review of World Energy, 2014.

The link between energy and the economy comes both from the supply side and the demand side.

With respect to supply, it takes energy of many types to make goods and services of all types. This is discussed in Item 2 above.

With respect to demand,

(a) People who earn good wages (indirectly through the making of goods and services with energy products) can afford to buy products using energy.

(b) Because consumers pay taxes and buy goods and services, growth in demand from adequate wages flows through to governments and businesses as well.

(c) Higher wages enable higher debt, and higher debt also acts to increase demand.

(d) Increased demand increases the price of the resources needed to make the product with higher demand, making more of such resources economic to extract.

 

11. We need a growing supply of cheap energy to maintain economic growth.

This can be seen several ways.

(a) Today, all countries compete in a world economy. If a country’s economy uses an expensive source of energy (say high-priced oil or renewables) it must compete with other countries that use cheaper fuel sources (such as coal). The high price of energy puts the country with high-cost energy at a severe competitive disadvantage, pushing the economy toward economic contraction.

(b) Part of the world’s energy consumption comes from “free” energy from the sun. This solar energy is not evenly distributed: the warm areas of the world get considerably more than the cold areas of the world. The cold areas of the world are forced to compensate for this lack of free solar energy by building more substantial buildings and heating them more. They are also more inclined to use “closed in” transportation vehicles that are more costly than say, walking or using a bicycle.

Back in pre-fossil fuel days, the warm areas of the world predominated in economic development. The cold areas of the world “surged ahead” when their own forests ran short of the wood needed to provide the heat-energy they needed, and they learned to use coal instead. The knowledge they gained about using coal for home-heating quickly transferred to the ability to use coal to provide heat for industrial purposes. Since the warm areas of the world were not yet industrialized, the coal-using countries of the North were able to surge ahead economically. The advantage of the cold industrialized countries grew as they learned to use oil and natural gas. But once oil and natural gas became expensive, and industrialization spread around the world, the warm countries regained their advantage.

(c) Wages, (non-human) energy costs, and financing costs are all major contributors to the cost of producing goods and services. When energy costs rise, the rise in energy costs puts pressure both on wages and on interest rates (since interest rates determine financing costs), because businesses need to keep the total cost of goods and services close to “flat,” if consumers are to afford them. This occurs because wages do not rise as energy prices rise. In fact, pressure to keep the total cost of goods low creates pressure to reduce wages when oil prices are high (perhaps by sending manufacturing to a lower-cost country), just as it adds pressure to keep interest rates low.

(d) If we look at historical US data, wages have tended to rise strongly (in inflation-adjusted terms) when oil prices were less than $40 to $50 barrel, but have tended to stagnate above that oil price range.

Figure 9. Average wages in 2012$ compared to Brent oil price, also in 2012$. Average wages are total wages based on BEA data adjusted by the CPI-Urban, divided total population. Thus, they reflect changes in the proportion of population employed as well as wage levels.

12. Oil prices that are too low for producers should be a serious concern. Such low prices occur because oil becomes unaffordable. In the language of economists, oil demand drops too low. 

A common belief is that our concern should be oil prices that are too high, and thus strangle the economy. A much bigger concern should be that oil prices will fall too low, discouraging investment. Such low oil prices also encourage civil unrest in oil exporting nations, because the governments of these nations depend on tax revenue that is available when oil prices are high to balance their budgets.

It can easily be seen that high oil prices strangle the economies of oil importers. The salaries of consumers go “less far” in buying basics such as food (which is raised and transported using oil) and transportation to work. Higher costs for basics causes consumers cut back on discretionary expenditures, such as buying new more expensive homes, buying new cars, and going out to restaurants. These cutbacks by consumers lead to job layoffs in discretionary sectors and to falling home prices. Debt defaults are likely to rise as well, because laid-off workers have difficulty paying their loans. Our experience in the 2007-2009 period shows that these impacts quickly lead to severe recession and a drop in oil prices.

The issue we are now seeing is the reverse–too low oil prices for oil producers, including oil exporters. These low oil prices are contributing to the unrest we see in the Middle East. Low oil prices also contribute to Russia’s belligerence, since it needs high oil revenues to maintain its budget.

Conclusion

We seem now to be at risk in many ways of entering into the collapse scenario experienced by many civilizations before us.

One of areas of risk is that interest rates will rise, as the Quantitative Easing and Zero Interest Rate Policies held in place since 2008 erode. These ultra-low interest rates are needed to keep products affordable, since the high cost of oil (relative to consumer salaries) has not really gone away.

Another area of risk is an increase in debt defaults. One example occurs when student loan borrowers find it impossible to repay these loans on their meager wages. Another example is China with the financing of its big recent expansion by debt. A third example is the possibility that businesses extracting resources will find it impossible to repay loans with today’s (relatively) low commodity prices.

Another area of risk is natural disasters. It takes surpluses to deal with these disasters. As we reach limits, it becomes harder to mitigate the effects of a major hurricane or earthquake.

Clearly loss of oil production because of conflict in the Middle East or in other oil producing countries is a concern.

This list is by no means exhaustive. Many economies are “near the edge” now. Recent news is that Germany has slipped into recession as well as Japan. One economy failing is likely to pull others with it.

Eight Energy Myths Explained

9 comments

Posted on 23rd April 2014 by Administrator in Economy |Politics |Social Issues

Submitted by Gail Tverberg of Our Finite World blog,

Republicans, Democrats, and environmentalists all have favorite energy myths. Even Peak Oil believers have favorite energy myths. The following are a few common mis-beliefs,  coming from a variety of energy perspectives. I will start with a recent myth, and then discuss some longer-standing ones.

Myth 1. The fact that oil producers are talking about wanting to export crude oil means that the US has more than enough crude oil for its own needs.

The real story is that producers want to sell their crude oil at as high a price as possible. If they have a choice of refineries A, B, and C in this country to sell their crude oil to, the maximum amount they can receive for their oil is limited by the price the price these refineries are paying, less the cost of shipping the oil to these refineries.

If it suddenly becomes possible to sell crude oil to refineries elsewhere, the possibility arises that a higher price will be available in another country. Refineries are optimized for a particular type of crude. If, for example, refineries in Europe are short of light, sweet crude because such oil from Libya is mostly still unavailable, a European refinery might be willing to pay a higher price for crude oil from the Bakken (which also produces light sweet, crude) than a refinery in this country. Even with shipping costs, an oil producer might be able to make a bigger profit on its oil sold outside of the US than sold within the US.

The US consumed 18.9 million barrels a day of petroleum products during 2013. In order to meet its oil needs, the US imported 6.2 million barrels of oil a day in 2013 (netting exported oil products against imported crude oil). Thus, the US is, and will likely continue to be, a major oil crude oil importer.

If production and consumption remain at a constant level, adding crude oil exports would require adding crude oil imports as well. These crude oil imports might be of a different kind of oil than that that is exported–quite possibly sour, heavy crude instead of sweet, light crude. Or perhaps US refineries specializing in light, sweet crude will be forced to raise their purchase prices, to match world crude oil prices for that type of product.

The reason exports of crude oil make sense from an oil producer’s point of view is that they stand to make more money by exporting their crude to overseas refineries that will pay more. How this will work out in the end is unclear. If US refiners of light, sweet crude are forced to raise the prices they pay for oil, and the selling price of US oil products doesn’t rise to compensate, then more US refiners of light, sweet crude will go out of business, fixing a likely world oversupply of such refiners. Or perhaps prices of US finished products will rise, reflecting the fact that the US has to some extent in the past received a bargain (related to the gap between European Brent and US WTI oil prices), relative to world prices. In this case US consumers will end up paying more.

The one thing that is very clear is that the desire to ship crude oil abroad does not reflect too much total crude oil being produced in the United States. At most, what it means is an overabundance of refineries, worldwide, adapted to light, sweet crude. This happens because over the years, the world’s oil mix has been generally changing to heavier, sourer types of oil. Perhaps if there is more oil from shale formations, the mix will start to change back again. This is a very big “if,” however. The media tend to overplay the possibilities of such extraction as well.

Myth 2. The economy doesn’t really need very much energy.

 

We humans need food of the right type, to provide us with the energy we need to carry out our activities. The economy is very similar: it needs energy of the right types to carry out its activities.

One essential activity of the economy is growing and processing food. In developing countries in warm parts of the world, food production, storage, transport, and preparation accounts for the vast majority of economic activity (Pimental and Pimental, 2007). In traditional societies, much of the energy comes from human and animal labor and burning biomass.

If a developing country substitutes modern fuels for traditional energy sources in food production and preparation, the whole nature of the economy changes. We can see this starting to happen on a world-wide basis in the early 1800s, as energy other than biomass use ramped up.

Figure 1. World Energy Consumption by Source, Based on Vaclav Smil estimates from Energy Transitions: History, Requirements and Prospects and together with BP Statistical Data on 1965 and subsequent

Figure 1. World Energy Consumption by Source, Based on Vaclav Smil estimates from Energy Transitions: History, Requirements and Prospects and together with BP Statistical Data on 1965 and subsequent

The Industrial Revolution began in the late 1700s in Britain. It was enabled by coal usage, which made it possible to make metals, glass, and cement in much greater quantities than in the past. Without coal, deforestation had become a problem, especially near cold urban areas, such as London. With coal, it became possible to use industrial processes that required heat without the problem of deforestation. Processes using high levels of heat also became cheaper, because it was no longer necessary to cut down trees, make charcoal from the wood, and transport the charcoal long distances (because near-by wood had already been depleted).

The availability of coal allowed the use of new technology to be ramped up. For example, according to Wikipedia, the first steam engine was patented in 1608, and the first commercial steam engine was patented in 1712. In 1781, James Watt invented an improved version of the steam engine. But to actually implement the steam engine widely using metal trains running on metal tracks, coal was needed to make relatively inexpensive metal in quantity.

Concrete and metal could be used to make modern hydroelectric power plants, allowing electricity to be made in quantity. Devices such as light bulbs (using glass and metal) could be made in quantity, as well as wires used for transmitting electricity, allowing a longer work-day.

The use of coal also led to agriculture changes as well, cutting back on the need for farmers and ranchers. New devices such as steel plows and reapers and hay rakes were manufactured, which could be pulled by horses, transferring work from humans to animals. Barbed-wire fence allowed the western part of the US to become cropland, instead one large unfenced range. With fewer people needed in agriculture, more people became available to work in cities in factories.

Our economy is now very different from what it was back about 1820, because of increased energy use. We have large cities, with food and raw materials transported from a distance to population centers. Water and sewer treatments greatly reduce the risk of disease transmission of people living in such close proximity. Vehicles powered by oil or electricity eliminate the mess of animal-powered transport. Many more roads can be paved.

If we were to try to leave today’s high-energy system and go back to a system that uses biofuels (or only biofuels plus some additional devices that can be made with biofuels), it would require huge changes.

Myth 3. We can easily transition to renewables.

On Figure 1, above, the only renewables are hydroelectric and biofuels. While energy supply has risen rapidly, population has risen rapidly as well.

Figure 2. World Population, based on Angus Maddison estimates, interpolated where necessary.

Figure 2. World Population, based on Angus Maddison estimates, interpolated where necessary.

When we look at energy use on a per capita basis, the result is as shown in Figure 3, below.

Figure 3. Per capita world energy consumption, calculated by dividing world energy consumption (based on Vaclav Smil estimates from Energy Transitions: History, Requirements and Prospects together with BP Statistical Data for 1965 and subsequent) by population estimates, based on Angus Maddison data.

Figure 3. Per capita world energy consumption, calculated by dividing world energy consumption (based on Vaclav Smil estimates from Energy Transitions: History, Requirements and Prospects together with BP Statistical Data for 1965 and subsequent) by population estimates, based on Angus Maddison data.

The energy consumption level in 1820 would be at a basic level–only enough to grow and process food, heat homes, make clothing, and provide for some very basic industries. Based on Figure 3, even this required a little over 20 gigajoules of energy per capita. If we add together per capita biofuels and hydroelectric on Figure 3, they would come out to only about 11 gigajoules of energy per capita. To get to the 1820  level of per capita energy consumption, we would either need to add something else, such as coal, or wait a very, very long time until (perhaps) renewables including hydroelectric could be ramped up enough.

If we want to talk about renewables that can be made without fossil fuels, the amount would be smaller yet. As noted previously, modern hydroelectric power is enabled by coal, so we would need to exclude this. We would also need to exclude modern biofuels, such as ethanol made from corn and biodiesel made from rape seed, because they are greatly enabled by today’s farming and transportation equipment and indirectly by our ability to make metal in quantity.

I have included wind and solar in the “Biofuels” category for convenience. They are so small in quantity that they wouldn’t be visible as a separate categories, wind amounting to only 1.0% of world energy supply in 2012, and solar amounting to 0.2%, according to BP data. We would need to exclude them as well, because they too require fossil fuels to be produced and transported.

In total, the biofuels category without all of these modern additions might be close to the amount available in 1820. Population now is roughly seven times as large, suggesting only one-seventh as much energy per capita. Of course, in 1820 the amount of wood used led  to significant deforestation, so even this level of biofuel use was not ideal. And there would be the additional detail of transporting wood to markets. Back in 1820, we had horses for transport, but we would not have enough horses for this purpose today.

Myth 4. Population isn’t related to energy availability.

If we compare Figures 2 and 3, we see that the surge in population that took place immediately after World War II coincided with the period that per-capita energy use was ramping up rapidly. The increased affluence of the 1950s (fueled by low oil prices and increased ability to buy goods using oil) allowed parents to have more children. Better sanitation and innovations such as antibiotics (made possible by fossil fuels) also allowed more of these children to live to maturity.

Furthermore, the Green Revolution which took place during this time period is credited with saving over a billion people from starvation. It ramped up the use of irrigation, synthetic fertilizers and pesticides, hybrid seed, and the development of high yield grains. All of these techniques were enabled by availability of oil. Greater use of agricultural equipment, allowing seeds to be sowed closer together, also helped raise production. By this time, electricity reached farming communities, allowing use of equipment such as milking machines.

If we take a longer view of the situation, we find that a “bend” in the world population occurred about the time of Industrial Revolution, and the ramp up of coal use (Figure 4). Increased farming equipment made with metals increased food output, allowing greater world population.

Figure 4. World population based on data from "Atlas of World History," McEvedy and Jones, Penguin Reference Books, 1978  and Wikipedia-World Population.

Figure 4. World population based on data from “Atlas of World History,” McEvedy and Jones, Penguin Reference Books, 1978
and Wikipedia-World Population.

Furthermore, when we look at countries that have seen large drops in energy consumption, we tend to see population declines. For example, following the collapse of the Soviet Union, there were drops in energy consumption in a number of countries whose energy was affected (Figure 5).

Figure 6. Population as percent of 1985 population, for selected countries, based on EIA data.

Figure 6. Population as percent of 1985 population, for selected countries, based on EIA data.

Myth 5. It is easy to substitute one type of energy for another.

Any changeover from one type of energy to another is likely to be slow and expensive, if it can be accomplished at all.

One major issue is the fact that different types of energy have very different uses. When oil production was ramped up, during and following World War II, it added new capabilities, compared to coal. With only coal (and hydroelectric, enabled by coal), we could have battery-powered cars, with limited range. Or ethanol-powered cars, but ethanol required a huge amount of land to grow the necessary crops. We could have trains, but these didn’t go from door to door. With the availability of oil, we were able to have personal transportation vehicles that went from door to door, and trucks that delivered goods from where they were produced to the consumer, or to any other desired location.

We were also able to build airplanes. With airplanes, we were able to win World War II. Airplanes also made international business feasible on much greater scale, because it became possible for managers to visit operations abroad in a relatively short time-frame, and because it was possible to bring workers from one country to another for training, if needed. Without air transport, it is doubtful that the current number of internationally integrated businesses could be maintained.

The passage of time does not change the inherent differences between different types of fuels. Oil is still the fuel of preference for long-distance travel, because (a) it is energy dense so it fits in a relatively small tank, (b) it is a liquid, so it is easy to dispense at refueling stations, and (c) we are now set up for liquid fuel use, with a huge number of cars and trucks on the road which use oil and refueling stations to serve these vehicles. Also, oil works much better than electricity for air transport.

Changing to electricity for transportation is likely to be a slow and expensive process. One important point is that the cost of electric vehicles needs to be brought down to where they are affordable for buyers, if we do not want the changeover to have a hugely adverse effect on the economy. This is the case because salaries are not going to rise to pay for high-priced cars, and the government cannot afford large subsidies for everyone. Another issue is that the range of electric vehicles needs to be increased, if vehicle owners are to be able to continue to use their vehicles for long-distance driving.

No matter what type of changeover is made, the changeover needs to implemented slowly, over a period of 25 years or more, so that buyers do not lose the trade in value of their oil-powered vehicles. If the changeover is done too quickly, citizens will lose their trade in value of their oil-powered cars, and because of this, will not be able to afford the new vehicles.

If a changeover to electric transportation vehicles is to be made, many vehicles other than cars will need to be made electric, as well. These would include long haul trucks, busses, airplanes, construction equipment, and agricultural equipment, all of which would need to be made electric. Costs would need to be brought down, and necessary refueling equipment would need to be installed, further adding to the slowness of the changeover process.

Another issue is that even apart from energy uses, oil is used in many applications as a raw material. For example, it is used in making herbicides and pesticides, asphalt roads and asphalt shingles for roofs, medicines, cosmetics, building materials, dyes, and flavoring. There is no possibility that electricity could be adapted to these uses. Coal could perhaps be adapted for these uses, because it is also a fossil fuel.

Myth 6. Oil will “run out” because it is limited in supply and non-renewable.

This myth is actually closer to the truth than the other myths. The situation is a little different from “running out,” however. The real situation is that oil limits are likely to disrupt the economy in various ways. This economic disruption is likely to be what leads to an  abrupt drop in oil supply. One likely possibility is that a lack of debt availability and low wages will keep oil prices from rising to the level that oil producers need for extraction. Under this scenario, oil producers will see little point in investing in new production. There is evidence that this scenario is already starting to happen.

There is another version of this myth that is even more incorrect. According to this myth, the situation with oil supply (and other types of fossil fuel supply) is as follows:

Myth 7. Oil supply (and the supply of other fossil fuels) will start depleting when the supply is 50% exhausted. We can therefore expect a long, slow decline in fossil fuel use.

This myth is a favorite of peak oil believers. Indirectly, similar beliefs underly climate change models as well. It is based on what I believe is an incorrect reading of the writings of M. King Hubbert. Hubbert is a geologist and physicist who foretold a decline of US oil production, and eventually world production, in various documents, including Nuclear Energy and the Fossil Fuels, published in 1956. Hubbert observed that under certain circumstances, the production of various fossil fuels tends to follow a rather symmetric curve.

Figure 7. M. King Hubbert's 1956 image of expected world crude oil production, assuming ultimate recoverable oil of 1,250 billion barrels.

Figure 7. M. King Hubbert’s 1956 image of expected world crude oil production, assuming ultimate recoverable oil of 1,250 billion barrels.

A major reason that this type of forecast is wrong is because it is based on a scenario in which some other type of energy supply was able to be ramped up, before oil supply started to decline.

Figure 8. Figure from Hubbert's 1956 paper, Nuclear Energy and the Fossil Fuels.

Figure 8. Figure from Hubbert’s 1956 paper, Nuclear Energy and the Fossil Fuels.

With this ramp up in energy supply, the economy can continue as in the past without a major financial problem arising relating to the reduced oil supply. Without a ramp up in energy supply of some other type, there would be a problem with too high a population in relationship to the declining energy supply. Per-capita energy supply would drop rapidly, making it increasingly difficult to produce enough goods and services. In particular, maintaining government services is likely to become a problem. Needed taxes are likely to rise too high relative to what citizens can afford, leading to major problems, even collapse, based on the research of Turchin and Nefedov (2009).

Myth 8. Renewable energy is available in essentially unlimited supply.

The issue with all types of energy supply, from fossil fuels, to nuclear (based on uranium), to geothermal, to hydroelectric, to wind and solar, is diminishing returns. At some point, the cost of producing energy becomes less efficient, and because of this, the cost of production begins to rise. It is the fact wages do not rise to compensate for these higher costs and that cheaper substitutes do not become available that causes financial problems for the economic system.

In the case of oil, rising cost of extraction comes because the cheap-to-extract oil is extracted first, leaving only the expensive-to-extract oil. This is the problem we recently have been experiencing. Similar problems arise with natural gas and coal, but the sharp upturn in costs may come later because they are available in somewhat greater supply relative to demand.

Uranium and other metals experience the same problem with diminishing returns, as the cheapest to extract portions of these minerals is extracted first, and we must eventually move on to lower-grade ores.

Part of the problem with so-called renewables is that they are made of minerals, and these minerals are subject to the same depletion issues as other minerals. This may not be a problem if the minerals are very abundant, such as iron or aluminum. But if minerals are lesser supply, such as rare earth minerals and lithium, depletion may lead to rising costs of extraction, and ultimately higher costs of devices using the minerals.

Another issue is choice of sites. When hydroelectric plants are installed, the best locations tend to be chosen first. Gradually, less desirable locations are added. The same holds for wind turbines. Offshore wind turbines tend to be more expensive than onshore turbines. If abundant onshore locations, close to population centers, had been available for recent European construction, it seems likely that these would have been used instead of offshore turbines.

When it comes to wood, overuse and deforestation has been a constant problem throughout the ages. As population rises, and other energy resources become less available, the situation is likely to become even worse.

Finally, renewables, even if they use less oil, still tend to be dependent on oil. Oil is  important for operating mining equipment and for transporting devices from the location where they are made to the location where they are to be put in service. Helicopters (requiring oil) are used in maintenance of wind turbines, especially off shore, and in maintenance of electric transmission lines. Even if repairs can be made with trucks, operation of these trucks still generally requires oil. Maintenance of roads also requires oil. Even transporting wood to market requires oil.

If there is a true shortage of oil, there will be a huge drop-off in the production of renewables, and maintenance of existing renewables will become more difficult. Solar panels that are used apart from the electric grid may be long-lasting, but batteries, inverters, long distance electric transmission lines, and many other things we now take for granted are likely to disappear.

Thus, renewables are not available in unlimited supply. If oil supply is severely constrained, we may even discover that many existing renewables are not even last very long lasting.